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Abstract

Nanomaterials are increasingly being used for commercial purposes. However, concerns about the 

potential risks of exposure to humans have been raised. We previously reported unusual 

pulmonary disease and death in a group of patients with occupational exposure to spray paint. 

However, the nanoparticle and chemical composition of the exposure was not fully described. The 

present study aimed to isolate and identify the nanoparticles observed in the patients’ biopsies and 

report the potential deleterious effects to human lungs using electron microscopy. Using electron 

microscopy and energy dispersive x-ray analysis, silica nanoparticles were identified and 

characterized mainly in macrophages, pulmonary microvessels, vascular endothelial cells, 

microlymphatic vessels, pleural effusions, and a few in alveolar epithelial cells and pulmonary 

interstitial tissue (with no microscale particles present). Notably, damage to alveolar epithelial 

cells, macrophages, vascular endothelial cells, and the blood–gas barrier was observed. Given the 

well-documented toxicity of microscale silica, it is possible that these silica nanoparticles may 

have contributed in part to the illness reported in these workers. Such a possibility supports the 

adoption of controls and prevention strategies to minimize inhalation of nanoparticles by workers, 

and it highlights the urgent need and the importance of the nanosafety study in humans.
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Nanotechnology has been regarded as a new technological revolution that touches almost 

every aspect of human life, making its presence felt in areas such as electronics, coatings, 

optical devices, energy, and medicine. It is estimated that the worldwide market for 

nanomaterials will grow to $3.1 trillion by 2015 (Lux report 2008). On the other hand, 

because of their widespread use, small size, large surface area, and metal contaminants, 

nanomaterials may exhibit unique bioactivity and interaction with cellular or subcellular 

structures. Therefore, concerns and fears have been expressed regarding potential risks of 

nanoparticles to the environment, health, and safety (Nel et al. 2006; Schmidt 2009). 

However, studies determining which physicochemical properties of nanomaterials result in 

toxicity have been scarce.

Previously, we reported findings (Song et al. 2009) regarding a group of patients who were 

exposed to polyacrylate spray paint in a poorly ventilated workplace for five to thirteen 

months. Nanoparticles were associated with this polyacrylate coating. Affected workers 

suffered mysterious clinical symptoms (pleural effusions, progressive pulmonary fibrosis, 

and pleural damage) and death. Nanoparticles were found in the patients’ pulmonary tissues, 

bronchoalveolar lavage fluid, and chest effusions, as well as in the raw materials used by 

these workers. It is inferred that these nanoparticles may be related to the patients’ disease, 

but the chemical composition of the nanoparticles remains unknown. For this reason and the 

fact that none of the nanoparticles was likely to induce the severe toxic effects reported in 

animal experiments, some researchers have argued that the disease may have been related to 

other factors such as gases, as the raw material examined by gas chromatograph–mass 

spectrometer contained many gases, including butanoic acid, butyl ester, acetic acid, 

toluene, acetic acid ethenyl ester, and 1-ethylene dioxide. Unfortunately, these patients 

exhibited none of the signs and symptoms related to these irritant or asphyxiant gases, such 

as coughing, eye irritation, dizziness/headaches, drowsiness, nausea, or vomiting. 

Additionally, pulmonary clinicopathology showed a progressive feature even in the absence 

of continued exposure, a major indication that lessened the probability that the observed 

symptoms were caused by a gas or gases.

In the present study, examination of the patients’ biopsies and chest fluids by transmission 

electron microscopy (TEM) and energy dispersive x-ray analysis (EDX) permitted the 

isolation and identification of nanomaterials in biopsies. Also, we report the potential 

deleterious effects of nanomaterials on human lungs, which have not been previously fully 

described and reported.

Methods

Transmission Electron Microscopy of Pulmonary Biopsies and Chest Membranes and EDX 
of Nanoparticles

The formaldehyde-fixed and paraffin-embedded pulmonary tissues and/or pleural 

membranes, obtained from affected workers in a spray paint facility upon admission to 

Beijing Chaoyang Hospital, Beijing, China, between January 2007 and April 2008, were 

used for TEM examination and EDX analysis. Tissue fragments of 1 mm3 (1 mm × 1 mm × 

1 mm) were cut with a sharp razor blade from distinct, randomly chosen areas of the paraffin 
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block and reprocessed as follows. Xylene dewaxing was performed in a 50°C oven for two 

hours to remove paraffin, and tissues were lightly rehydrated with graded acetone (at 40°C 

in 100% acetone for one hour; and at room temperature in 90%, 70%, 50%, and 30% 

acetone for fifteen minutes, respectively). Specimens of the samples were rinsed overnight 

in 0.1 M phosphate buffer (350 mOsm, pH 7.4); postfixed for two hours in osmium tetroxide 

(1% osmium tetroxide in 0.125 M sodium cacodylate buffer, 400 mOsm, pH 7.4); rinsed 

again in 0.1 M phosphate buffer (three × ten minutes); passed through stepwise dehydration 

in increasing concentrations of ethanol (50%, 70%, 90%, and 100%); rinsed with 100% 

propylene oxide (two × ten minutes); and embedded in Araldite (at 37°C for two hours, 

45°C for twelve hours, and 60°C for twenty-four hours). Then they were cut into ultrathin 

sections (500–800 Å) and stained with uranyl acetate and lead citrate. The samples were 

then examined at an accelerating voltage of 60 or 200 kV using different TEMs and also 

analyzed using EDXs (JEOL JEM-2010F, EDX: INCA-IET200 B5~U92; TECNAI G2 20 S-

TWIN, EDX: GENESIS 2000) by different laboratories. Also, changes in cell morphology 

of lung tissue samples were observed and assessed. The specimen from a lung tumor patient 

was used as a control in TEM and EDX analysis and was processed as described above.

Analysis of Patients’ Pleural Fluids

Nanoparticle Morphology, Size, and Chemical Composition—Pleural effusions 

were obtained from four of seven patients upon admission to our hospital in April 2008 and 

were stored at −20°C. Samples were randomly used and melted under normal room 

conditions. When the chest fluid samples were centrifuged at 123.6 × g, stained with uranyl 

acetate, and air dried, round nanoparticles were observed to be wrapped in a fibrous 

structure (Song et al. 2009). Thus, at this time, chest effusions were then centrifuged at 

8,500 × g at room temperature for ten minutes, and a drop of the resulting supernatant liquid 

was overlaid onto 400-mesh carbon-coated copper grids (not stained by uranyl acetate), air-

dried, and observed using TEM by different laboratories. These preparations were also 

analyzed by EDX single-spot analysis to illuminate particle morphologies and to identify the 

particle composition. In addition, qualitative analysis was also performed.

Analysis by Inductively Coupled Plasma Mass Spectrometry (DRC-II, Perkin-
Elmer) or Atomic Absorption Flame Spectrophotometry (AA-6800/F, 
Shimadzu) for Determining Ca, Mg, Cu, Fe, and Zn Concentrations—Chest fluid 

from three of seven patients was analyzed for Si, Ca, Mg, Cu, Fe, and Zn, since metallic 

compounds are usually used as additives in coatings production. Chest fluid from patients 

with lymphoma, lung cancer, or malignant melanoma in our tumor department was used as 

controls. Certified standard samples of Si, Ca, Mg, Cu, Fe, and Zn were obtained from the 

National Research Center for Certified Reference Materials, China.

Histological Changes in Patients’ Lungs

All examinations were approved by our hospital’s ethics commission, and informed consent 

was obtained before all the examinations and procedures. The biosamples from seven 

patients included tunica mucosa bronchiorum, pulmonary tissues, and pleural membranes. 

All of these samples were obtained from patients between January 2007 and April 2008, 

when the patients were admitted to our hospital and underwent a variety of procedures, 
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including bronchoscopic examinations with bronchoalveolar lavage and transbronchial lung 

biopsy, internal thoracoscopic examinations with lung biopsy, and video-assisted thoracic 

surgery with wedge resection. Pathological changes were carefully observed and revised 

under light microscopy in different laboratories.

Results

Nanoparticles Observed and Identified in Lung Tissue and Lung Injury under TEM

Early Stage Location of Nanoparticles in Exposed Lungs—In the early stages 

(within three months of disease onset), nanoparticles 20–21 nm in diameter were observed 

and found to be located in the cytoplasm (Figure 1A), nuclei and organelles of macrophages, 

pulmonary microvessels (Figures 1B and 1C), pulmonary vascular endothelial cells, and 

microlymphatic vessels. In contrast, only a few were observed in alveolar epithelial cells and 

interstitial tissues. When analyzed by EDX, all of these nanoparticles contained Si, O, P, and 

S (Figure 1D), and, occasionally, K and Fe were detected. On the other hand, using TEM, 

the specimen from the control tumor patient was also observed to contain structures 

resembling nanoparticles (Figure 1E). However, no Si was detected by EDX analysis, but O, 

S, Cl, and elements from stains were detected (Figure 1F), indicating that these structures 

were just stains or other cellular components such as glucogen. From comparison with 

control peaks (peaks of C and Cu oriented on carbon Cu-grids), it was concluded that these 

were silica nanoparticles. These particles consisted of 20–21 nm primary nanoparticles and 

agglomerates of these particles, indicating they were engineered nanomaterials. Further 

qualitative analysis showed that the O/Si ratios at the k atomic orbital varied from 4.43:1 to 

18.0:1 by weight-%, and the O relative contents were more than in the O/Si ratio of 1.2–

1.6:1, which may have been because there were hydroxyls or H2O on the silica nanoparticle 

surfaces, or because of the contribution of O in alveolar cells. In general, particles larger 

than 100 nm, or other kinds of particles such as nanosilicates, were not observed in patients’ 

lung tissues.

Early Stage Lung Damage in Affected Workers—Pulmonary tissue and cells were 

found to be deteriorated. Early in the disease process, TEM examination of lung tissue 

demonstrated hyperplasia and degeneration of type II pneumocytes with short microvilli 

thinning and loss, and thickening of the basement membrane of type I alveolar epithelial 

cells, as well as pulmonary interstitial edema. Also, vascular endothelial cell damage was 

noted with the swelling and vacuolization of cell organelles and the thickening of the 

basement membrane. The blood–gas barrier appeared fuzzy and was much thicker than 

normal (>0.5 μm), and its structure was difficult to distinguish (Figure 1B).

Late-Stage Location of Nanoparticles in Exposed Lungs—In the late disease stage 

(eighteen months, just prior to death), few nanoparticles were observed in pulmonary cells 

and interstitial tissue, as well a few in macrophages. However, some fibrous nanostructured 

bodies ~70 nm in length were observed in the nuclei and cytoplasm of alveolar epithelial 

cells, where they formed tangled agglomerates (Figure 2A) or crossed the nuclear membrane 

of alveolar epithelial cells. Using EDX single spot analysis, these fibrous nanostructured 

bodies were found to contain Fe, Ca, and Mg, but not Si. Also, microscale particles were not 
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observed in the patient’s lung tissues, which suggested that microscale particles may be less 

likely to be involved in the lung injury process.

Late-Stage Lung Damage in Affected Workers—In late-stage disease, damage to 

pulmonary tissue was more prominent than that in the early stage. Hyperplasia and vacuolar 

degeneration of type II pneumocytes with thinning and loss of surface microvilli (Figure 

2B), as well as thickening and blurring of type I epithelial basement membranes and 

vascular endothelial cell basement membranes, was observed. Also, the blood–gas barrier 

structure appeared fuzzy and difficult to distinguish. Red blood cells were observed in 

alveolar spaces, which is indicative of potential alveolar hemorrhage and edema. Pulmonary 

fibrosis with fibroblast proliferation and fibrinous necrosis was also noted, and under TEM, 

pleural membranes showed edema, fibrosis, looseness, and blurring of cell structures. These 

observations were consistent with the present diagnosis of pulmonary pathology. Also, a 

great number of macrophages were observed as aggregations in the late stage as in the early 

disease process, indicating that macrophages may play some roles in the development of the 

disease; these particle-laden aggregations were ever seen in pulmonary illness caused by 

microscale silica (Kim et al. 2001).

Morphology and Size of Chest Fluid Nanoparticles

Particles with different sizes varying from ~20 nm to ~2 nm in diameter were observed 

(Figure 3A) in patients’ pleural effusions, although homogeneous nanoparticles were noted 

when pleural effusions were centrifuged at 123.6 × g (Song et al. 2009). When analyzed by 

EDX, the particles contained Si, O, C, and Cu (Figure 3B). By comparison with a blank 

(Figure 3C), these particles were identified as silica nanoparticles (where C and Cu peaks 

originated from the carbon-coated copper grids). Further qualitative analysis showed that the 

O/Si ratio varied from 3.98:1 to 7.75:1 by atomic mass-% and from 2.28:1 to 4.34:1 by 

weight-%, which suggests the presence of hydroxyls or H2O on the silica nanoparticle 

surfaces. However, the sizes of the silica nanoparticles in the pleural effusions were a little 

smaller than in the pulmonary tissue, possibly because of a size-dependent translocation of 

particles from the lungs.

Importantly, in one patient’s pleural effusions, layered crystals and cleavage fragments, 

varying in size from micro- to nanoscale, were noted (Figure 3D). Some crystals contained 

Si, Ca, Mg, S, Cl, and O, indicating the presence of a magnesium silicate such as talc, and 

some contained more complex mixtures of Si, Ca, Mg, Al, P, S, Cl, and O (Figure 3E). 

Additionally, nanosilica particles, as well as nanosilicate particles containing Si, Ca, Mg, Al, 

K, Na, Ba, P, S, Cl, and O, were confirmed by EDX analysis and noted to be scattered 

around the microsilicates. Si was detected in every particle observed in the pleural effusions, 

but with varying relative contents.

In summary, we conducted EDX analysis of four patients’ (out of seven) pleural effusions 

and/or their lung biopsies in different laboratories. These four patients included the nineteen-

year-old and the twenty-nine-year-old female patients who died of pulmonary failure, and 

the eighteen-year-old and the forty-seven-year-old female patients who were severely 

disabled (EDX analysis was not conducted in the other female patients because of a lack of 

Song et al. Page 5

Toxicol Pathol. Author manuscript; available in PMC 2016 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biosamples). We found that silica nanoparticles existed in all four patients, either in 

pulmonary biopsies (early stage) or pleural effusions. Occasionally, nano- and microscale 

silicates were found in chest fluids, but not in any of the four patients’ lung tissues. The 

TEM images presented here indicate that these silica nanoparticles identified—the highly 

spherical and uniform nanoscale particles—are most likely amorphous in nature, as is the 

case for most known engineered forms of spherical silica in the nanoscale size range.

Inductively Coupled Plasma Mass Spectrometry and Atomic Absorption Flame 
Spectrophotometry of Pleural Effusions

Concentrations of Ca, Mg, Cu, Fe, and Zn were analyzed in chest fluids, showing that the 

concentrations of these elements were lower in the patients’ pleural effusions than in the 

tumor patient controls (effusion, control’, n = 3): Cu, 0.282 ± 0.216 mg/L; Cu’, 0.721 ± 

0.091 mg/L; Mg, 8.190 ± 4.609 mg/L; Mg’, 17.623 ± 1.753 mg/L; Ca, 17.423 ± 10.782 

mg/L; Ca’, 81.694 ± 9.779 mg/L; Fe, 0.310 ± 0.208 mg/L; Fe’, 3.888 ± 4.813 mg/L; Zn, 

0.125 ± 0.128 mg/L; and Zn’, 0.363 ± 0.216 mg/L. However, the concentration of Si in 

patients’ pleural effusions was 4.844 ± 0.431 mg/L, about two times of that in tumor 

patients’ chest fluids (2.530 ± 0.206 mg/L).

Histological Changes in Patients’ Lungs

In the early disease stage, pathological examination using light microscopy showed the 

effusion of inflammatory cells in tunica mucosa bronchiorum; aggregations of macrophages 

and inflammatory cells; proteinaceous effusions in the alveolar space; swollen and widened 

alveolar septa with scattered neutrophil leukocytes; and pulmonary fibrosis (Figure 4A). 

Pathological study of pleura exhibited fibrinous and inflammatory cells, foreign-body 

granulomas, and hemorrhage. The results of all patients were consistent but nonspecific.

In the late stage, damage to pulmonary tissue was similar to but more prominent than that in 

the early stage. Pulmonary alveoli were partly emphysematous, with aggregations of 

macrophages and type II alveolar epithelial cell proliferations, and the alveolar septum was 

widened with blood vessel dilatation and congestion (Figure 4B). Pathological study on 

pleura showed fibrous thickening and swelling of the pleural membrane, fibroblast 

proliferation, lymphocyte aggregation, and nodulus lymphaticus formation.

Discussion

From the above observations and analyses, silica nanoparticles were identified in patients’ 

lungs and their pleural effusions. Distribution and translocation of these nanoparticles were 

determined mainly in pulmonary microvessels, vascular endothelial cells, macrophages, and 

microlymphatic vessels of patients’ lungs. A few particles were found in alveolar epithelial 

cells and pulmonary interstitial tissue (with no microscale particles present). In pleural 

effusions, the particles appeared slightly smaller in size than those in lung tissues, and 

micro- and nanosilicates were noted in one patient’s chest effusion and contained thirteen to 

fifteen different elements and widely varying O/Si ratios. Notably, damage to vascular 

endothelial cells, alveolar epithelial cells, and macrophages, as well as the blood–gas barrier, 

was observed. Additionally, the concentration of Si in patients’ pleural effusions was about 
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two times that in tumor patients’ chest fluids. These data provided important information to 

understand the unique nanoparticle-induced lung disease process, which seems to be 

dependent on where the nanoparticles are located and whether they are persistent in the lung.

The toxicity of silica has been widely studied because of its ubiquity and wide use in many 

industries. Exposure to silica (mainly crystalline silica) can result in or contribute to a series 

of severe respiratory diseases, including silicosis, interstitial fibrosis, industrial bronchitis, 

small airway disease, emphysema, and vascular diseases, as well as immunologic reactions 

(Ding et al. 2002; Hnizdo and Vallyathan, 2003; Merget et al. 2002; Thibodeau et al. 2004). 

Even though amorphous silica appears less toxic than the crystalline form, toxicological 

studies of amorphous silica nanoparticles have shown that amorphous silica increases 

reactive oxygen species concentrations, reduces glutathione levels, and induces pro-

inflammatory, inflammatory, and oxidative stress responses both in vivo and in vitro 

(Kaewamatawong et al. 2006; Park and Park 2009; Slowing et al. 2009; Wang et al. 2009; 

Ye et al. 2010). One of the notable bio-effects of amorphous silica nanoparticles is that they 

can enter cell nuclei (Chen and von Mikecz 2005), including human lung cells (Song et al. 

2009), where they reduce aberrant clusters of topoisomerase I and protein aggregates in the 

nucleoplasm. In vitro studies also show that amorphous silica nanoparticles disturb 

mitochondrial function and lower cell survival by decreasing cell survival signaling in 

human neural cells (Lai et al. 2010), and they exert cytotoxicities by altering protein 

expression in HaCaT cells (Yang et al. 2010). A recent study found that amorphous silica 

nanoparticles (70 nm) localize in the cytoplasm, nucleus, and mitochondria in mouse liver, 

and they induce mutagenic activity in vitro (Nabeshi et al. 2011). Moreover, amorphous 

nanosilica has been shown to accumulate in the lung, liver, kidney, gut, bone marrow, and 

brain in animal experiments and cause multiorgan damage (Kaewamatawong et al. 2006; 

Nishimori et al. 2009a; Nishimori et al. 2009b; Oberdörster et al. 2005).

Our present findings that silica nanoparticles localized in cytoplasm, subcellular organelles, 

and cell nuclei, entered pulmonary microvessels, and thereby reached extrapulmonary 

multiorgans through systemic circulation raise important concerns: (1) Did these silica 

nanoparticles in the nuclei potentially bind to the DNA phosphate backbone, influence 

nuclear integrity, and trigger genotoxicity by physical interaction, forming intranuclear 

protein aggregates, and regulating redox-sensitive transcription factors and DNA-damage 

responsive signaling, as seen in animal-based nanotoxicological studies (Chen and von 

Mikecz 2005; Nabeshi et al. 2011; Singh et al. 2009)? (2) Did these silica nanoparticles in 

cytoplasm exert cytotoxicity by increasing reactive oxygen species and by inducing pro-

inflammatory, inflammatory, and oxidative stress responses, as seen both in vivo and in 

vitro (Kaewamatawong et al. 2006; Park and Park 2009; Slowing et al. 2009; Ye et al. 

2010)? (3) Did these silica nanoparticles enter extrapulmonary organs through systemic 

circulation and cause multiorgan damage, as seen in animal experiments (Kaewamatawong 

et al. 2006; Nishimori et al. 2009a; Nishimori et al. 2009b; Oberdörster et al. 2005)? All of 

the above concerns highlight the urgent need and the importance of the safe usage and risk 

assessment of nanomaterials, and of developing prevention strategies.

Given the well-documented toxicity of microscale silica in humans and findings of 

amorphous silica nanoparticles in animals (Kaewamatawong et al. 2006; Nishimori et al. 
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2009a; Nishimori et al. 2009b; Oberdörster et al. 2005), it is possible that these silica 

nanoparticles may have contributed in part to these patients’ disease, whether they exerted 

toxicities directly or acted as carriers, although further evidence is needed to make a direct 

causal linkage between the silica nanoparticles in patients’ lungs and their respiratory 

problems and the death of two workers as they worked under complex conditions and 

inhaled a cocktail of toxic materials. To date, little information regarding the clinical toxicity 

of nanosilica has been published. As nano- and microscale silica are found to induce 

cytokine release and apoptosis in macrophages in in vitro and in vivo studies (Ding et al. 

2002; Park and Park 2009; Thibodeau et al. 2004; Wang et al. 2009; Ye et al. 2010), taken 

together with our findings of nanosilica in macrophages undergoing apoptosis (Song et al. 

2009), it is suggested here that apoptosis is one mechanism of nanosilica-related 

macrophage damage in humans. Also, in these patients, the clinical manifestation of 

nonspecific inflammation detected in CT scans and pathological examinations may have 

been partly caused by silica nanoparticle accumulation and the resulting induced 

inflammatory response.

In pulmonary illness caused by microscale silica, macrophages have been observed as 

particle-laden aggregations (Kim et al. 2001), a reaction that is typically seen with inert 

dusts. Similar aggregations of macrophages were observed in our patients in the early stage 

of disease, with numerous silica nanoparticles aggregating in the cytoplasm, mitochondria, 

lysosomes, and karyoplasm of macrophages. The retention half-life of solid particles in the 

alveolar region, mediated by alveolar macrophages through phagocytosis of deposited 

particles, is about 70 days in rats and up to 700 days in humans (Oberdörster et al. 2005). In 

our patients, the retention half-life of silica nanoparticles appeared to be about 100 days, as 

about eighteen months later following the final raw material exposure, few nanoparticles 

were observed in pulmonary cells and interstitial tissue, as well a few in macrophages, 

which is consistent with previous literature reporting that the retention half-life of 

nanoparticles by the mechanical alveolar macrophage-mediated clearance is about 70 days 

(Hoet et al. 2004).

The reported patients had been exposed to polyacrylate coatings, which usually have several 

components of binders, pigments, solvents, fillers, and additives (Liu 2008). Fillers and 

additives are generally composed of natural or synthetic minerals, such as silicon dioxide, 

barium sulfate, calcium carbonate, silicates (talc, mica, or kaolinite), or a complex mixture 

of the above materials, to produce special and improved functions, such as water resistance, 

transparency, and flame retardation (Liu 2008; Wang et al. 2006; Zhou et al. 2002). Because 

of their small size, large specific surface area, and alkyl groups in different bonding states, 

silica nanoparticles in coatings can markedly improve the suspension stability, 

weatherability, tensile strength, and resistance of a coating to washing, infrared irradiation, 

abrasion, and heat while maintaining a clear surface (Wang et al. 2006; Zhou et al. 2002). In 

contrast, microsilica can increase only the hardness and abrasion resistance (Zhou et al. 

2002). Similarly, layered silicates, another very popular coating ingredient, play an 

important role as adsorbents, catalysts, and ionic exchangers in the production of 

nanocoatings and can greatly increase thermal stability and act as fire retardants in the form 

of nanocomposites (Alexandre and Dubois 2000; Schmidt and Giannelis 2010).
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Given the benefits of nanosilica and/or nanosilicates, they are sometimes used concurrently 

in varying ratios to each other in the production of nanocomposite coatings (Liu 2008) to 

obtain specific coating characteristics. Thus, a possible rough sketch can be made of the 

coatings used at these patients’ workplace: filters and additives of nanosilica and/or micro- 

and nanosilicates, a film-forming polyacrylate agent, and various solvents, including 

butanoic acid, acetic acid, and toluene. Furthermore, using inductively coupled plasma 

atomic emission spectrometry examination (Ma 2009), the powder in the raw materials used 

in the workplace (the spray painting) was found to contain these elements in the following 

percentages: Si, 0.016; Ca, 0.20; Mg, 0.051; K, 0.015; Na, 0.82; Ba, 0.069; P, 0.048; Cu, 

0.0090; Fe, 0.098; and Zn, 0.0085. These results are almost identical to our findings of silica 

nanoparticles and micro- and nanosilicates in patients’ pleural effusions that contain Si, Ca, 

Mg, K, Na, Ba, Al, P, S, Cl, and O. When coatings were sprayed, heated, and dried in the 

workplace, these nanosilica and/or nanosilicates in the coatings were possibly present in the 

air as floccule; entered the pulmonary alveoli, blood, and lymph systems; and finally 

reached extrapulmonary organs of the patients, as observed in animal experiments 

(Nishimori et al. 2009a; Oberdörster et al. 2005; Oberdörster 2010; Singh et al. 2009). Thus 

they potentially contributed in part to the multiorgan injuries seen in our patients (Song et al. 

2009).

Another important material found in one patient was micro- and nanosilicates. It appears a 

little puzzling that the micro- and nanosilicates were noted in one patient’s chest effusion, 

since only nanoparticles but not microscale particles were observed in the raw materials 

used in the workplace. Also, what were the fibrous nanostructured bodies in alveolar 

epithelial cells, and how did they get there? The reason may be the raw materials—a poor-

quality product (a “three-no” product: no trademark, origin, or material safety data sheet, 

chosen to decrease expenses)—used in the workers’ polystyrene processing surroundings. 

Another reason is that, in reality, workers are usually exposed to very complex conditions in 

which nanomaterials with different sizes, shapes, and chemical composition may be present 

and there is also the possible presence of microscale materials and some gases, which could 

potentially contribute to causing severe damage.

The sizes of silica nanoparticles in pleural effusions were not identical to those in alveolar 

tissue, but a little smaller, possibly a result of the size-selective differences in particle 

immobilization in lungs. Typically, the smaller the nanoparticles, the deeper they can travel 

into the lung, as reviewed in several articles (Borm et al. 2006; Hoet et al. 2004; Oberdörster 

et al. 2005). This particle size–dependent organ distribution has been confirmed in 

properties of iridium-192–radiolabeled nanoparticles (Semmler-Behnke et al. 2007) and 

gold nanoparticles (Sadauskas et al. 2009). Another reason is probably the chest fluid 

sampling, as homogeneous nanoparticles were noted when pleural effusions were 

centrifuged at 123.6 × g (Song et al. 2009).

There are still many outstanding questions here. For example, what is the possible surface 

contamination of silica nanoparticles? In proper perspective, however, these questions are 

not as important or urgent as questions regarding how to prevent the potential risks of these 

nanomaterials to workers and the environment.
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Our present study shows that silica nanoparticles can arrive at workers’ lungs, chest 

effusions, and pulmonary circulation, and they may have contributed in part to the workers’ 

illness and death, highlighting the urgent need for safety protocols that protect workers. 

Protocols or solutions may include regulations for occupational health and safety in 

nanofield work or research; workplace exposure assessment, monitoring, and controls; 

medical prescreening and surveillance; establishing industrial hygiene guidelines; and 

effective personal protective equipment or application of appropriate safeguards. In addition, 

given the severity of the disease as seen in our patients, and the great difficulties in diagnosis 

and treatment, it is a new challenge for our clinical doctors in terms of how to prevent, 

diagnose, and treat the disease or injury. Thus far, no medical laboratories in China are 

equipped with TEM and analytic systems such as EDX, x-ray diffraction, or x-ray 

photoelectron spectrometry, and the few top materials science and engineering institutes, 

which are well equipped, have staff that usually lack the proper biomedical knowledge and 

maintain TEM configurations unsuitable for biological samples. Most importantly, some 

patients exposed or suspected to have been exposed to nanomaterials are found with unusual 

clinical manifestations, making it very difficult to determine a causal relation between their 

nanomaterials exposure and their disorders.

In conclusion, our findings of nanosilica in patients’ biopsies and pleural effusions, together 

with our previous report (Song et al. 2009), present a clue that these silica nanoparticles may 

have contributed in part to the illness reported in these workers. Our findings highlight the 

urgent need and the importance of the nanosafety study, as well as the urgent need for safety 

protocols that protect workers and the environment. Our data in humans may provide useful 

information for intensely increased nanotoxicology research that would mimic nanomaterial 

exposure using animals or in vitro models to determine mechanisms. Nanomaterials offer 

great benefits as well as potential risks, which raises the question of how to enjoy their 

benefits while minimizing related potential hazards to humans as well as the environment. 

Answering these questions is an urgent and difficult global-level task.
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Figure 1. 
Transmission electron microscopy images of silica nanoparticles obtained from lung tissues 

of a nineteen-year-old female worker who was severely disabled. Nanoparticles 20–21 nm in 

diameter scattered in cytoplasm of a macrophage (A, scale bar = 200 nm), and a pulmonary 

microvessel (B, scale bar = 500 nm; and C, scale bar = 100 nm). Energy dispersive x-ray 

analysis (TECNAI G2 20 S-TWIN, EDX: GENESIS 2000) revealed they were silica 

nanoparticles (D), peaks of C and Cu oriented on carbon Cu-grids, and Pb from stains. 

Structures resembling nanoparticles were also observed in the specimen from the control 
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tumor patient (E, scale bar = 150 nm). No Si was detected, but there were stains (F) (JEOL 

JEM-2010F, EDX: INCA-IET200 B5~U92).
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Figure 2. 
Transmission electron microscopy images of fibrous nanostructured bodies and pulmonary 

damage in another nineteen-year-old female worker who died eighteen months after 

symptom onset. Fibrous nanostructured bodies ~70 nm in length were observed in the nuclei 

of an alveolar epithelial cell, where the nanostructure is in tangled form (A, scale bar = 30 

nm). B (scale bar = 2 μm) shows a fraction of a red blood cell in alveolar spaces, 

hyperplasia, and vacuolar degeneration of type II pneumocytes with thinning and loss of 

surface microvilli.
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Figure 3. 
Transmission electron microscopy images of nanomaterials obtained from chest fluid in a 

twenty-nine-year-old female worker who died twenty-one months after symptom onset. 

Nanoparticles varying from ~20 nm to ~2 nm in diameter were observed (A, scale bar = 10 

nm). Energy dispersive x-ray analysis (TECNAI G2 20 S-TWIN, EDX: GENESIS 2000) 

revealed that they were silica nanoparticles (B, C). Layered crystals with their cleavage 

fragments were noted, varying from nano- to microscale in size (D, scale bar = 220 nm) and 

containing the more complex elements of Si, Ca, Mg, Al, Cr, P, S, Cl, and O (E).
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Figure 4. 
Histological changes in patients’ lungs. In the early stage, aggregation of macrophages in the 

alveolar space, swollen and widened alveolar septa, and pulmonary fibrosis were observed 

(A, hematoxylin and eosin stain, 100×). In the later disease process, pulmonary alveoli were 

partly emphysematous with aggregations of macrophages and proliferations of type II 

alveolar epithelial cells, and the alveolar septum was widened with blood vessel dilatation 

and congestion (B, hematoxylin and eosin, 100×).
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